

# **Fluid Mechanics**



| Nomenclature  |                                                                      |  |  |
|---------------|----------------------------------------------------------------------|--|--|
|               |                                                                      |  |  |
| atm           | atmospheric pressure                                                 |  |  |
| А             | area                                                                 |  |  |
| BHP           | brake horsepower; hp                                                 |  |  |
| с             | speed of sound                                                       |  |  |
| CC            | capital charge constant, 1/yr                                        |  |  |
| D             | diameter                                                             |  |  |
| $D_0^{}$      | diameter of the pipe wall                                            |  |  |
| f             | friction factor                                                      |  |  |
| F             | friction heating per unit mass                                       |  |  |
| g             | gravity constant                                                     |  |  |
| h             | head                                                                 |  |  |
| $h_{fs}$      | suction friction head                                                |  |  |
| $h_{gs}$      | annes mading at the quotien flarge of a surrow                       |  |  |
|               | gauge reading at the suction flange of a pump<br>static suction head |  |  |
| $h_{ss}$      | static suction nead                                                  |  |  |
| $h_{vs}$      | velocity head at point of gauge attachment                           |  |  |
| Н             | total dynamic head                                                   |  |  |
| K             | bulk modulus                                                         |  |  |
| m             | mass flowrate                                                        |  |  |
| Μ             | Mach number                                                          |  |  |
| (NPSH)a       | available net positive suction head                                  |  |  |
| NPSH)r        | required net positive suction head                                   |  |  |
| Ν             | impeller rotational speed, rpm                                       |  |  |
| p             | vapor pressure                                                       |  |  |
| P             | pressure                                                             |  |  |
| PC            | pumping cost constant, \$/(hp-yr)                                    |  |  |
| PP            | purchasing price constant, \$/in., (dia.) x feet (of length)         |  |  |
| Q<br>Re       | volumetric flowrate                                                  |  |  |
| s             | Reynolds number<br>specific gravity                                  |  |  |
| s<br>V        | velocity                                                             |  |  |
| v<br>Z        | position in the direction opposite that of gravity                   |  |  |
| $\Lambda$     | pipe length                                                          |  |  |
| $\mathcal{L}$ | pipe roughness                                                       |  |  |
| μ             | fluid viscosity                                                      |  |  |
| $\rho$        | density                                                              |  |  |
| $\mathcal{P}$ |                                                                      |  |  |
|               |                                                                      |  |  |

# **Energy Relationships** (incompressible flow)

## **Bernoulli's Equation:**

$$P_2 - P_1 = \rho \frac{V_1^2}{2} \left( 1 - \frac{A_1^2}{A_2^2} \right) - \rho \cdot F$$

Diffuser and sudden expansions:

$$P_2 - P_1 = \rho \frac{V_1^2}{2} - \rho \cdot F$$

#### **Friction Heating in a Pipe:**

$$F = Q \cdot \Delta \times \frac{\mu \ 128}{\rho \ \Pi \cdot D_0^4}$$

## Torricelli's Equation:

(For flow from the bottom of a vessel)

$$V_2 = \sqrt{2 \cdot g \cdot h}$$

# **Pressure-Depth Relationship:**

(Constant density)

$$P_2 - P_1 = -\rho \cdot g(z_2 - z_1)$$

#### **Reynold's Number:**

$$\operatorname{Re} = \frac{D \cdot V \cdot \rho}{\mu}$$

#### **Friction Factor (f):**

$$\frac{1}{\sqrt{f}} = -4\log = \left[\frac{0.27\varepsilon}{D} + (7/\text{Re})^{0.9}\right]$$
  
Re \ge 4000

Mach number:

$$M = V / c$$

#### Speed of Sound:

$$c = \sqrt{\frac{K}{\rho}}$$

#### A) <u>Pump, Compressor, and Pipe Equations</u>

#### **Economic Pipe Diameter:**



$$D_{econ} = \left[\frac{10 \cdot PC \cdot m^{3} f (4/\Pi)^{2} (1/p^{2})}{CC \cdot PP}\right]^{1/6}$$

#### **Pump Power Output:**

$$kW = H \cdot Q \cdot \rho / 3.670 \times 10^5$$
  
(H in N \cdot m / kg; Q in m<sup>3</sup> / h; \rho in kg / m<sup>3</sup>)

- $kW = H \cdot Q / 3.599 \times 10^6$ (H in Pa; Q in  $m^3 / h$ )
- $hp = H \cdot Q \cdot s / 3.960 \times 10^{3}$ (H in  $lb_{f} \cdot ft / lb_{m}$ ; Q in gal/min)

$$hp = H \cdot Q / 1.714 \times 10^{3}$$
  
(H in  $lb_{f} / in^{2}$ ; Q in gal/min)

#### **Net Positive Suction Head\*:**

(Be sure to convert pressure units to head)

$$(NPSH)a = h_{ss} - h_{fs} - p$$

For an existing installation:

 $(NPSH)a = atm + h_{gs} - p + h_{vs}$ 

\* To avoid cavitiation, (NPSH)a  $\geq$  (NPSH)r

#### **Head-Flow Relationship:**

(pumps)

$$\frac{(Q_2)^2}{(Q_1)^2} = \frac{h_2}{h_1}$$

Specific Speed  $(N_s)^{**}$ :

$$N_{s} = \frac{N \cdot Q^{0.5}}{H^{0.75}}$$
(Q in gal/min; H in  $ft \cdot lb_{f} / lb_{m}$ )

\*\* For compressors, H is adiabatic head

#### **Suction Specific Speed (S):**



$$S = \frac{N \cdot Q^{1/2}}{\left(NPSH\right)^{3/4}}$$

#### Specific Diameter $(D_s)$ :

(Compressors)

$$D_{s} = \frac{D \cdot H^{0.25}}{Q^{0.5}} D_{s} = \frac{D \cdot H^{0.25}}{Q^{0.5}}$$

Flow Coefficient ( $\phi$ ): (Compressors)

$$\phi = \frac{Q}{N \cdot D^3}$$

**Pressure Coefficient**  $(\Psi)$ :

$$\Psi = \frac{H}{N^2 \cdot D^2}$$

#### **The Affinity Laws (pumps)**

| Capacity: | Constant Impeller Dia. | Constant Impeller Speed<br>(D = impeller dia.) |
|-----------|------------------------|------------------------------------------------|
|           |                        |                                                |

$$\frac{Q_1}{Q_2} = \frac{N_1}{N_2} \qquad \qquad \frac{Q_1}{Q_2} = \frac{D_1}{D_2}$$

**Constant Impeller Speed** (D = impeller dia.)

**Constant Impeller Speed** 

 $\frac{h_1}{h_2} = \frac{(D_1)^2}{(D_2)^2}$ 

(D = impeller dia.)

Head:

Constant Impeller Dia.

$$\frac{H_1}{H_2} = \frac{(N_1)^2}{(N_2)^2}$$

Break Horsepower: Constant Impeller Dia.

$$\frac{BHP_1}{BHP_2} = \frac{(N_1)^3}{(N_2)^3} \qquad \qquad \frac{BHP_1}{BHP_2} = \frac{(D_1)^3}{(D_2)^3}$$

LaBour Pump Company - 901 Ravenwood Drive, Selma, Alabama 36701

Ph: (317) 924-7384 - Fax: (317) 920-6605 - www.labourtaber.com

A Product of Peerless Pump Company Copyright © 2005 Peerless Pump Company

